题目内容
函数的单调减区间为 ;
为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
(Ⅰ)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;
(Ⅱ)若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少? 参考数据:
设函数在点处的切线方程为.
(1)求值,并求的单调区间;
(2)证明:当时,.
设曲线在点处的切线与直线垂直,则等于( )
A. 2 B. C. 1 D.
已知函数,曲线在点处的切线为 若 时,有极值.
(1)求 的值;
(2)求在 上的最大值和最小值.
在极坐标系中,直线的方程为,则点到直线的距离为( )
A. B. C. D.
函数的图像在处切线的斜率为( )
已知抛物线的准线经过双曲线的一个焦点,则双曲线的离心率为( )
一个正四棱锥(底面为正方形,顶点在底面的射影为底面中心的四棱锥)和一个正方体,它们有半径相同的内切球,记正四棱锥的体积为,正方体的体积为,且,则实数的最小值为 ( )
A. 2 B. C. D.