题目内容
12.若$f(x)={x^3}+3\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$,则$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=-$\frac{1}{8}$.分析 设$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=m,可得f(x)=x3+3m,因此m=$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=${∫}_{0}^{1}{x}^{3}dx$+3${∫}_{0}^{1}mdx$=$\frac{1}{4}{x}^{4}{|}_{0}^{1}$+3m=$\frac{1}{4}$+3m,可得m.
解答 解:设$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=m,
则f(x)=x3+3m,
∴m=$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=${∫}_{0}^{1}{x}^{3}dx$+3${∫}_{0}^{1}mdx$=$\frac{1}{4}{x}^{4}{|}_{0}^{1}$+3m=$\frac{1}{4}$+3m,
解得m=-$\frac{1}{8}$.
故答案为:$-\frac{1}{8}$.
点评 本题考查了微积分基本定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
3.若将函数y=sin(2x+φ)图象向右平移$\frac{π}{8}$个单位长度后关于y轴对称,则φ的值为( )
| A. | $\frac{π}{4}$ | B. | $\frac{3π}{8}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{8}$ |
7.为了调查高中学生是否喜欢数学与性别的关系,随机抽查男、女学生各 40 名,得到具体数据如表:
(I)根据上面的列联表,能否在犯错误的概率不超过 0.025 的前提下,认为是否喜欢数学与性别有关?
(II)计算这 80 位学生不喜欢数学的频率;(III)用分层抽样的方法从不喜欢数学的男女学生中抽查 6 人进行数学问卷调查,再从中抽取 4 份问卷递交校长办,求至少抽出 3 名女生问卷的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 是否喜欢数学 | 是 | 否 | 合计 |
| 男生 | 30 | 10 | 40 |
| 女生 | 20 | 20 | 40 |
| 合计 | 50 | 30 | 80 |
(II)计算这 80 位学生不喜欢数学的频率;(III)用分层抽样的方法从不喜欢数学的男女学生中抽查 6 人进行数学问卷调查,再从中抽取 4 份问卷递交校长办,求至少抽出 3 名女生问卷的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0[来源:] | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
17.若随机变量X的分布列如表,则a2+b2的最小值为( )
| X | 0 | 1 | 2 |
| P | $\frac{1}{3}$ | a | b |
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{3}{9}$ | D. | $\frac{4}{9}$ |