题目内容

12.若$f(x)={x^3}+3\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$,则$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=-$\frac{1}{8}$.

分析 设$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=m,可得f(x)=x3+3m,因此m=$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=${∫}_{0}^{1}{x}^{3}dx$+3${∫}_{0}^{1}mdx$=$\frac{1}{4}{x}^{4}{|}_{0}^{1}$+3m=$\frac{1}{4}$+3m,可得m.

解答 解:设$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=m,
则f(x)=x3+3m,
∴m=$\int{\begin{array}{l}1\\ 0\end{array}}f(x)dx$=${∫}_{0}^{1}{x}^{3}dx$+3${∫}_{0}^{1}mdx$=$\frac{1}{4}{x}^{4}{|}_{0}^{1}$+3m=$\frac{1}{4}$+3m,
解得m=-$\frac{1}{8}$.
故答案为:$-\frac{1}{8}$.

点评 本题考查了微积分基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网