ÌâÄ¿ÄÚÈÝ
É趨ÒåÔÚÇø¼ä[x1£¬ x2]Éϵĺ¯Êýy
=f(x)µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OÎª×ø±êԵ㣬ÉèÏòÁ¿
=
£¬![]()
£¬
=(x£¬y)£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+(1£¦Ë) x2ʱ£¬¼ÇÏòÁ¿
=¦Ë
+(1£¦Ë)
£®¶¨Òå¡°º¯Êýy=f(x)ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸¡°
kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®
£¨1£©É躯Êý f(x)=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄȡֵ·¶Î§£»
£¨2£©ÇóÖ¤£ºº¯Êý
ÔÚÇø¼ä
ÉÏ¿ÉÔÚ±ê×¼k=
ÏÂÏßÐÔ½üËÆ£®
£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln(e£1)=
0.541£©
¡¾½â¡¿£¨1£©ÓÉ
=¦Ë
+(1£¦Ë)
µÃµ½
=¦Ë
£¬
ËùÒÔB£¬N£¬AÈýµã¹²Ïߣ¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡2·Ö
ÓÖÓÉx=¦Ë x1+(1£¦Ë) x2ÓëÏòÁ¿
=¦Ë
+(1£¦Ë)
£¬µÃNÓëMµÄºá×ø±êÏàͬ£® ¡¡¡¡¡4·Ö
¶ÔÓÚ [0£¬1]Éϵĺ¯Êýy=x2£¬A(0£¬0)£¬B(1£¬1)£¬
ÔòÓÐ
£¬¹Ê
£»
ËùÒÔkµÄȡֵ·¶Î§ÊÇ
£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡
¡¡¡¡¡6·Ö
£¨2£©¶ÔÓÚ
Éϵĺ¯Êý
£¬
A(
)£¬B(
)£¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡8·ÖÔòÖ±ÏßABµÄ·½³Ì
£¬¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10·Ö
Áî
£¬ÆäÖÐ
£¬
ÓÚÊÇ
£¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡13·Ö
ÁбíÈçÏ£º
x | em | (em£¬em+1£em) | em+1£em | (em+1£em£¬em+1) | em+1 |
| + | 0 | £ | ||
| 0 | Ôö |
| ¼õ | 0 |
Ôò![]()
£¬ÇÒÔÚ
´¦È¡µÃ×î´óÖµ£¬
ÓÖ
0.123
£¬´Ó¶øÃüÌâ³ÉÁ¢£® ¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡16·Ö