ÌâÄ¿ÄÚÈÝ
16£®ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cosa\\ y=2sina\end{array}\right.$£¨aΪ²ÎÊý£©£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{6}$£©=2£®£¨1£©·Ö±ðÇó³öÇúÏßCºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãPÔÚÇúÏßCÉÏ£¬ÇÒµãPµ½Ö±Ïß1µÄ¾àÀëΪ1£®ÇóÂú×ãÕâÑùÌõ¼þµÄµãPµÄ¸öÊý£®
·ÖÎö £¨1£©ÓÉsin2¦Á+cos2¦Á=1£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»ÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÇúÏßCÊÇÔ²ÐÄC£¨0£¬0£©£¬°ë¾¶r=2µÄÔ²£¬Çó³öÔ²ÐÄC£¨0£¬0£©µ½Ö±ÏßlµÄ¾àÀëµÃµ½Ö±ÏßlÓëÔ²CÏàÇУ¬ÓÉ´ËÄÜÇó³öÖ±ÏßlÓëÔ²CÏàÇеÃÂú×ãÕâÑùÌõ¼þµÄµãPµÄ¸öÊý£®
½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cosa}\\{y=2sina}\end{array}\right.$£¨aΪ²ÎÊý£©£®
¡àÓÉsin2¦Á+cos2¦Á=1£¬
µÃµ½ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£®
¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{6}$£©=2£¬
¡à$¦Ñcos¦Ècos\frac{¦Ð}{6}+¦Ñsin¦Èsin\frac{¦Ð}{6}$=2£¬
¡à$\frac{\sqrt{3}}{2}¦Ñcos¦È+\frac{1}{2}¦Ñsin¦È=2$£¬
¡àÓɦÑcos¦È=x£¬¦Ñsin¦È=y£¬
µÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪ$\sqrt{3}x+y-4=0$£®
£¨2£©¡ßÇúÏßC£ºx2+y2=4ÊÇÔ²ÐÄC£¨0£¬0£©£¬°ë¾¶r=2µÄÔ²£®
Ô²ÐÄC£¨0£¬0£©µ½Ö±ÏßlµÄ¾àÀëd=$\frac{|0+0-4|}{\sqrt{3+1}}$=2=r£¬
¡àÖ±ÏßlÓëÔ²CÏàÇУ¬
¡ßµãPÔÚÇúÏßCÉÏ£¬ÇÒµãPµ½Ö±Ïß1µÄ¾àÀëΪ1£®
¡àÓÉÖ±ÏßlÓëÔ²CÏàÇеÃÂú×ãÕâÑùÌõ¼þµÄµãPµÄ¸öÊýΪ2¸ö£®
µãÆÀ ±¾Ì⿼²éÇúÏߺÍÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄµãµÄ¸öÊýµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪעÒâ¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã¬×¢Òâµãµ½Ö±ÏߵľàÀ빫ʽµÄºÏÀíÔËÓã®
| A£® | [-$\frac{7}{8}$£¬0£©¡È£¨$\frac{{e}^{2}1{n}^{2}2}{4}$£¬1] | B£® | [-$\frac{7}{8}$£¬0£©¡È£¨$\frac{1}{e}$£¬1] | ||
| C£® | £¨-1£¬-$\frac{7}{8}$£©¡È£¨$\frac{{e}^{2}1{n}^{2}2}{4}$£¬2] | D£® | £¨-1£¬0£©¡È£¨$\frac{1}{e}$£¬1] |
| A£® | 2 | B£® | ¡À2 | C£® | 2$\sqrt{3}$ | D£® | ¡À2$\sqrt{3}$ |