题目内容
6.已知数列{an}满足${a_1},\frac{a_2}{a_1},\frac{a_3}{a_2},…\frac{a_n}{{{a_{n-1}}}}$是首项为1,公比为2的等比数列,则a101=( )| A. | 2100 | B. | 24950 | C. | 25050 | D. | 25151 |
分析 推导出$\frac{{a}_{n}}{{a}_{n-1}}$=2n-1,利用累乘法求出an=${2}^{\frac{n(n-1)}{2}}$,由此能求出a101.
解答 解:∵数列{an}满足${a_1},\frac{a_2}{a_1},\frac{a_3}{a_2},…\frac{a_n}{{{a_{n-1}}}}$是首项为1,公比为2的等比数列,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=2n-1,
∴an=a1×$\frac{{a}_{2}}{{a}_{1}}$×$\frac{{a}_{3}}{{a}_{2}}$×…×$\frac{{a}_{n}}{{a}_{n-1}}$=1×21×22×…×2n-1=${2}^{\frac{n(n-1)}{2}}$,
∴a101=${2}^{\frac{101×100}{2}}$=25050.
故选:C.
点评 本题数列的第101项的求法,是基础题,解题时要认真审题,注意等比数列、累乘法的合理运用.
练习册系列答案
相关题目
11.随着手机使用的不断普及,现在全国各地的中小学生携带手机进入校园已经成为了普遍的现象,也引起了一系列的问题.然而,是堵还是疏,就摆在了我们学校老师的面前.某研究型学习小组调查研究“中学生使用手机对学习的影响”,部分统计数据如下表:
参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d
(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为A组,不使用手机且成绩优秀的18位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自A组、另一人来自B组的概率.
| 不使用手机 | 使用手机 | 合计 | |
| 学习成绩优秀人数 | 18 | 7 | 25 |
| 学习成绩不优秀人数 | 6 | 19 | 25 |
| 合计 | 24 | 26 | 50 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)研究小组将该样本中使用手机且成绩优秀的7位同学记为A组,不使用手机且成绩优秀的18位同学记为B组,计划从A组推选的2人和B组推选的3人中,随机挑选两人来分享学习经验.求挑选的两人中一人来自A组、另一人来自B组的概率.
15.等差数列{an}中,a3=9,a6=15,则数列{an}的公差d=( )
| A. | 1 | B. | 2 | C. | 3 | D. | $\frac{1}{2}$ |