题目内容

精英家教网设O为复平面的原点,Z1和Z2为复平面内的两动点,并且满足:
(1)Z1和Z2所对应的复数的辐角分别为定值θ和-θ(0<θ<
π2
)

(2)△OZ1Z2的面积为定值S求△OZ1Z2的重心Z所对应的复数的模的最小值.
分析:设出Z1,Z2和Z对应的复数分别为z1,z2和z,由于Z是△OZ1Z2的重心,表示其关系,求解即可.
解答:解:设Z1,Z2和Z对应的复数分别为z1,z2和z,其中
z1=r1(coθ+isinθ),
z2=r2(coθ-isinθ).
由于Z是△OZ1Z2的重心,根据复数加法的几何意义,
则有3z=z1+z2=(r1+r2)cosθ+(r1-r2)isinθ.
于是|3z|2=(r1+r22cos2θ+(r1-r22sin2θ
=(r1-r22cos2θ+4r1r2cos2θ+(r1-r22sin2θ
=(r1-r22+4r1r2cos2θ
又知△OZ1Z2的面积为定值S及sin2θ>0(0<θ<
π
2
)

所以
1
2
r1r2sin2θ=S
,即r1r2=
2S
sin2θ

由此,|3z|2=(r1-r2)2+
8Scos2θ
sin2θ
=(r1-r2)2+4Sctgθ

故当r1=r2=
2S
sin2θ
时,|z|最小,且|z|最小值=
2
3
Sctgθ
点评:本题考查复数的基本概念,复数求模,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网