题目内容
求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值。
| 解:f(x)=(x-a)2-1-a2,对称轴为x=a, ①当a<0时,由图①可知, f(x)min=f(0)=-1,f(x)max=f(2)=3-4a; ②当0≤a<1时,由图②可知, f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a; ③当1≤a≤2时,由图③可知, f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1; ④当a>2时,由图④可知, f(x)min=f(2)=3-4a,f(x)max=f(0)=-1。 |
练习册系列答案
相关题目