题目内容
6.| A. | 平行 | B. | 相交 | C. | 异面 | D. | 垂直 |
分析 由已知EF为三角形ABD的中位线,从而EF∥BD且EF=$\frac{1}{2}$BD,由CG=$\frac{1}{3}$BC.CH=$\frac{1}{3}$DC,得在四边形EFHG中,EF∥HG,即E,F,G,H四点共面,且EF≠HG,由此能得出结论.
解答 解::∵四边形ABCD是空间四边形,E、F分别是AB、AD的中点,
∴EF为三角形ABD的中位线,
∴EF∥BD且EF=$\frac{1}{2}$BD,
又∵CG=$\frac{1}{3}$BC.CH=$\frac{1}{3}$DC,
∴△CHG∽△CDB,且HG∥BD,HG=$\frac{1}{3}$BD,
∴在四边形EFHG中,EF∥HG,
即E,F,G,H四点共面,且EF≠HG,
∴四边形EFGH是梯形,
∴直线FH与直线EG相交,
故选:B.
点评 本题考查的知识点是平行线分线段成比例定理,是基础题,根据已知条件,判断出EF∥HG且EF≠HG,是解答本题的关键.
练习册系列答案
相关题目
17.设命题p:若2m+n=2,则双曲线$\frac{{y}^{2}}{{4}^{m}}$-$\frac{{x}^{2}}{{2}^{n}+5}$=1的焦距的最小值为6,命题q:若一圆柱存在的内切球,则此圆柱的表面积与内切球的表面积之比恰好等于圆柱的体积与内切球的体积之比,那么,下列命题为真命题的是( )
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
14.命题“?x∈R,使得x2+x+1<0”的否定是( )
| A. | ?x∈R,均有x2+x+1<0 | B. | ?x∈R,使得x2+x+1>0 | ||
| C. | ?x∈R,使得x2+x+1≥0 | D. | ?x∈R,均有x2+x+1≥0 |
1.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
(1)若用函数f(t)=Asin(ωt+φ)+h(A>0,ω>0,|φ|<$\frac{π}{2}$)来近似描述这个港口的水深和时间之间的对应关系,根据表中数据确定函数表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定要有2.25米的安全间隙(船底与洋底的距离),该船何时能进入港口?
| 时刻(t) | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
| 水深/米(y) | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定要有2.25米的安全间隙(船底与洋底的距离),该船何时能进入港口?
11.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人,高二780人,高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n等于( )
| A. | 660 | B. | 680 | C. | 720 | D. | 800 |
18.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的离心率e为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |