题目内容

如果点P在平面区域
2x-y+2≥0
x+y-2≤0
y-1≥0
内,点Q在曲线(x+2)2+y2=
1
4
上,那么|PQ|的最小值为(  )
A、
1
2
B、
13
-1
2
C、
10
-1
2
D、
2
-1
分析:作出可行域,将|PQ|的最小值转化为圆心到可行域的最小值,结合图形,求出|CP|的最小值,减去半径得|PQ|的最小值.
解答:解析:如图,画出平面区域(阴影部分所示),由圆心C(-2,0)向直线3x+4y-4=0作垂线,精英家教网
圆心C(-2,0)到点(-
1
2
,1)的距离为
13
2
,又圆的半径为
1
2
,所以可求得|PQ|的最小值是
13
-1
2

故选B
点评:本题考查简单的线性规划问题,本题解题的关键是看清楚条件中所表示的几何意义,实际上是求两点之间的距离的最值,本题是一个基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网