题目内容

8.已知焦点在x轴上的椭圆过点A(-3,0),且离心率e=$\frac{{\sqrt{5}}}{3}$,则椭圆的标准方程是(  )
A.$\frac{x^2}{9}+\frac{y^2}{{\frac{81}{4}}}$=1B.$\frac{x^2}{4}+\frac{y^2}{9}$=1C.$\frac{x^2}{{\frac{81}{4}}}+\frac{y^2}{9}$=1D.$\frac{x^2}{9}+\frac{y^2}{4}$=1

分析 设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得a=3,由离心率公式和a,b,c的关系,可得b,进而得到椭圆方程.

解答 解:设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得a=3,e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
可得c=$\sqrt{5}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{9-5}$=2,
则椭圆方程为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1.
故选:D.

点评 本题考查椭圆的方程的求法,注意运用椭圆的性质及离心率公式和a,b,c的关系,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网