题目内容
(平)定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
)=
f(x),且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f(
)等于( )
| x |
| 5 |
| 1 |
| 2 |
| 2011 |
| 2012 |
分析:令x=1,由f(0)=0,f(x)+f(1-x)=1,求得f(1)=1,令x=1,反复利用f(
x )=
f(x),可得f(
)=
f(
)=
,再令x=
,由f(x)+f(1-x)=1,可求得f(
),同理反复利用f(
x )=
f(x),可得f(
)=
f(
)=
,可求f(
),进而可求f(
)
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3125 |
| 1 |
| 2 |
| 1 |
| 625 |
| 1 |
| 32 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 1250 |
| 1 |
| 2 |
| 1 |
| 250 |
| 1 |
| 32 |
| 1 |
| 2012 |
| 2011 |
| 2012 |
解答:解::∵f(0)=0,f(x)+f(1-x)=1,
令x=1得:f(1)=1,
又f(
x )=
f(x),
∴当x=1时,f(
)=
f(1)=
;
令x=
,由f(
x )=
f(x)
f(
)=
f(
)=
;
同理可求:f(
)=
f(
)=
;
f(
)=
f(
)=
;
f(
)=
f(
)=
①
再令x=
,由f(x)+f(1-x)=1,可求得f(
)=
,
令x=
,反复利用f(
x )=
f(x)
可得f(
)=)=
f(
)=
;
f(
)=
f(
)=
;
…
f(
)=
f(
)=
②
由①②可得:f(
)=f(
)=
,
∵当0≤x1<x2≤1时,有f(x1)≤f(x2),
而0<
<
<
<1
所以有f(
)≥f(
)=
,
f(
)≤f(
)=
∴f(
)=
∴f(
)=
故选C
令x=1得:f(1)=1,
又f(
| 1 |
| 5 |
| 1 |
| 2 |
∴当x=1时,f(
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
令x=
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
同理可求:f(
| 1 |
| 125 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 8 |
f(
| 1 |
| 625 |
| 1 |
| 2 |
| 1 |
| 125 |
| 1 |
| 16 |
f(
| 1 |
| 3125 |
| 1 |
| 2 |
| 1 |
| 625 |
| 1 |
| 32 |
再令x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令x=
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2 |
可得f(
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
f(
| 1 |
| 50 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 8 |
…
f(
| 1 |
| 1250 |
| 1 |
| 2 |
| 1 |
| 250 |
| 1 |
| 32 |
由①②可得:f(
| 1 |
| 1250 |
| 1 |
| 3125 |
| 1 |
| 32 |
∵当0≤x1<x2≤1时,有f(x1)≤f(x2),
而0<
| 1 |
| 3125 |
| 1 |
| 2012 |
| 1 |
| 1250 |
所以有f(
| 1 |
| 2012 |
| 1 |
| 3125 |
| 1 |
| 32 |
f(
| 1 |
| 2012 |
| 1 |
| 1250 |
| 1 |
| 32 |
∴f(
| 1 |
| 2012 |
| 1 |
| 32 |
∴f(
| 2011 |
| 2012 |
| 31 |
| 32 |
故选C
点评:本题考查抽象函数及其应用,难点在于利用f(0)=0,f(x)+f(1-x)=1,两次赋值后都反复应用f(
x)=
f(x),从而使问题解决,属于难题.
| 1 |
| 5 |
| 1 |
| 2 |
练习册系列答案
相关题目