题目内容
设α∈(0,
),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,当x≥y时,f(
)=f(x)sinα+(1-sinα)f(y).
(Ⅰ)求f(
),f(
);
(Ⅱ)求α的值;
(Ⅲ)求g(x)=
sin(α-2x)+cos(α-2x)的单调增区间.
| π |
| 2 |
| x+y |
| 2 |
(Ⅰ)求f(
| 1 |
| 2 |
| 1 |
| 4 |
(Ⅱ)求α的值;
(Ⅲ)求g(x)=
| 3 |
(Ⅰ)令x=1,y=0,f(
)=f(1)sinα+(1-sinα)f(0)=sinα
令x=
,y=0,f(
)=f(
)sinα=sin2α.
(Ⅱ)令x=1,y=
,f(
)=f(1)sinα+(1-sinα)f(
)
=sinα+(1-sinα)sinα
=-sin2α+2sinα.
令x=
,y=
,f(
)=f(
)sinα+(1-sinα)f(
)=-2sin3α+3sin2α
∴-2sin3α+3sin2α=sinα
∴sinα=
∵α∈(0,
)
∴α=
;
(Ⅲ)g(x)=
sin(
-2x)+cos(
-2x)
=2sin(
-2x+
)=2sin(
-2x)=2sin(2x+
)
要使g(x)单调增区间,
则2kπ-
≤2x+
≤2kπ+
?k∈z
∴单调增区间是:[kπ-
,kπ-
]?(k∈z).
| 1 |
| 2 |
令x=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
(Ⅱ)令x=1,y=
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
=sinα+(1-sinα)sinα
=-sin2α+2sinα.
令x=
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 4 |
∴-2sin3α+3sin2α=sinα
∴sinα=
| 1 |
| 2 |
∵α∈(0,
| π |
| 2 |
∴α=
| π |
| 6 |
(Ⅲ)g(x)=
| 3 |
| π |
| 6 |
| π |
| 6 |
=2sin(
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
要使g(x)单调增区间,
则2kπ-
| π |
| 2 |
| 2π |
| 3 |
| π |
| 2 |
∴单调增区间是:[kπ-
| 7π |
| 12 |
| π |
| 12 |
练习册系列答案
相关题目