ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬ÊýÁÐ{cn}Âú×ãcn=
|
£¨3£©ÈôÊýÁÐPn=
| n2 |
| 4 |
·ÖÎö£º£¨1£©ÓÉÌâÒâ¼°2£¨Sn+1£©=an2+an£¨n¡ÊN*£©£¬Áîn=1£¬ÇóµÃÊýÁеÄÊ×ÏÔÚÀûÓÃÒÑÖªÊýÁеÄǰnÏîºÍÇó³öÊýÁеÄͨÏ
£¨2£©ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬¿ÉÒÔÇó³öÊýÁÐbnµÄͨÏʽ£¬ÔÙÓÐÊýÁÐ{cn}Âú×ãcn=
(k¡ÊN*)£¬ÀûÓ÷Ö×éÇóºÍÇó³öÊýÁÐcnµÄǰnÏîµÄºÍ£»
£¨3£©ÓÉÌâÒâ¼°£¨2£©¿ÉÖªnΪżÊý£¬¼´dn=A-B=Tn-Pn=
•2n-
n-
£¬ÓÉÓÚdn+2-dn=2n+2-47·ÖÎö¸Ãʽ¼´¿É£®
£¨2£©ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬¿ÉÒÔÇó³öÊýÁÐbnµÄͨÏʽ£¬ÔÙÓÐÊýÁÐ{cn}Âú×ãcn=
|
£¨3£©ÓÉÌâÒâ¼°£¨2£©¿ÉÖªnΪżÊý£¬¼´dn=A-B=Tn-Pn=
| 4 |
| 3 |
| 47 |
| 2 |
| 4 |
| 3 |
½â´ð£º½â£º£¨1£©n=1£¬2£¨S1+1£©=a12+a1?a1=2£®
£¬
Á½Ê½Ïà¼õ£¬µÃ2an=an2-an-12+an-an-1
¡ßan£¾0£¬¡àan-an-1=1£®
?{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1
¡àan=n+1£¨n¡ÊN*£©£®
£¨2£©¡ß{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2n£¨n¡ÊN*£©£¬
nΪżÊýʱ£¬Tn=£¨a1+a3++an-1£©+£¨b2+b4++bn£©
=
+
=
+
(2n-1)£»
nÎªÆæÊýʱ£¬Tn=Tn-1+cn£¬
=
+
(2n-1-1)+(n+1)=
+
•2n+1-
£¬
£¨3£©¡ßn=2kΪżÊý£¬
¡àTn=
+
(2n-1)£¬Pn=
+24n
Éèdn=A-B=Tn-Pn=
•2n-
n-
£¬
¡ßdn+2-dn=2n+2-47£¬
¡àd4£¼d6£¼d8£¼d10£¼2011£¼d12£¼d14£¼¡£¬ÇÒd2£¼2011
¡àdn¡Ù2011£¬¼´Tn-Pn¡Ù2011£¨nΪżÊý£©£¬
¡àÒÒͬѧµÄ¹ÛµãÕýÈ·£®
|
Á½Ê½Ïà¼õ£¬µÃ2an=an2-an-12+an-an-1
¡ßan£¾0£¬¡àan-an-1=1£®
?{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1
¡àan=n+1£¨n¡ÊN*£©£®
£¨2£©¡ß{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2n£¨n¡ÊN*£©£¬
nΪżÊýʱ£¬Tn=£¨a1+a3++an-1£©+£¨b2+b4++bn£©
=
(a1+an-1)•
| ||
| 2 |
4(1-4
| ||
| 1-4 |
| n2+2n |
| 4 |
| 4 |
| 3 |
nÎªÆæÊýʱ£¬Tn=Tn-1+cn£¬
=
| (n-1)2+2(n-1) |
| 4 |
| 4 |
| 3 |
| n2+4n+3 |
| 4 |
| 1 |
| 3 |
| 4 |
| 3 |
£¨3£©¡ßn=2kΪżÊý£¬
¡àTn=
| n2+2n |
| 4 |
| 4 |
| 3 |
| n2 |
| 4 |
Éèdn=A-B=Tn-Pn=
| 4 |
| 3 |
| 47 |
| 2 |
| 4 |
| 3 |
¡ßdn+2-dn=2n+2-47£¬
¡àd4£¼d6£¼d8£¼d10£¼2011£¼d12£¼d14£¼¡£¬ÇÒd2£¼2011
¡àdn¡Ù2011£¬¼´Tn-Pn¡Ù2011£¨nΪżÊý£©£¬
¡àÒÒͬѧµÄ¹ÛµãÕýÈ·£®
µãÆÀ£º´ËÌ⿼²éÁËÒÑÖªÊýÁеÄǰnÏîºÍÇóÊýÁеÄͨÏµÈ±ÈÊýÁе͍Ò弰ͨÏʽ£¬»¹¿¼²éÁËѧÉú·ÖÀàÌÖÂÛµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿