ÌâÄ¿ÄÚÈÝ

¾«Ó¢¼Ò½ÌÍø¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Âú×ã2£¨Sn+1£©=an2+an£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬ÊýÁÐ{cn}Âú×ãcn=
an£¬n=2k-1
bn£¬n=2k
(k¡ÊN*)
£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÇóTn£»
£¨3£©ÈôÊýÁÐPn=
n2
4
+24n(n¡ÊN*)
£¬¼×ͬѧÀûÓõڣ¨2£©ÎÊÖеÄTn£¬ÊÔͼȷ¶¨T2k-P2k£¨k¡ÊN*£©µÄÖµÊÇ·ñ¿ÉÒÔµÈÓÚ2011£¿Îª´Ë£¬ËûÉè¼ÆÁËÒ»¸ö³ÌÐò£¨Èçͼ£©£¬µ«ÒÒͬѧÈÏΪÕâ¸ö³ÌÐòÈç¹û±»Ö´ÐлáÊÇÒ»¸ö¡°ËÀÑ­»·¡±£¨¼´³ÌÐò»áÓÀÔ¶Ñ­»·ÏÂÈ¥£¬¶øÎÞ·¨½áÊø£©£¬ÄãÊÇ·ñͬÒâÒÒͬѧµÄ¹Ûµã£¿Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¼°2£¨Sn+1£©=an2+an£¨n¡ÊN*£©£¬Áîn=1£¬ÇóµÃÊýÁеÄÊ×ÏÔÚÀûÓÃÒÑÖªÊýÁеÄǰnÏîºÍÇó³öÊýÁеÄͨÏ
£¨2£©ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬¿ÉÒÔÇó³öÊýÁÐbnµÄͨÏʽ£¬ÔÙÓÐÊýÁÐ{cn}Âú×ãcn=
an£¬n=2k-1
bn£¬n=2k
(k¡ÊN*)
£¬ÀûÓ÷Ö×éÇóºÍÇó³öÊýÁÐcnµÄǰnÏîµÄºÍ£»
£¨3£©ÓÉÌâÒâ¼°£¨2£©¿ÉÖªnΪżÊý£¬¼´dn=A-B=Tn-Pn=
4
3
2n-
47
2
n-
4
3
£¬ÓÉÓÚdn+2-dn=2n+2-47·ÖÎö¸Ãʽ¼´¿É£®
½â´ð£º½â£º£¨1£©n=1£¬2£¨S1+1£©=a12+a1?a1=2£®
n¡Ý2£¬2(Sn+1)=an2+an
2(Sn-1+1)=an-12+an-1
£¬
Á½Ê½Ïà¼õ£¬µÃ2an=an2-an-12+an-an-1
¡ßan£¾0£¬¡àan-an-1=1£®
?{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1
¡àan=n+1£¨n¡ÊN*£©£®
£¨2£©¡ß{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2n£¨n¡ÊN*£©£¬
nΪżÊýʱ£¬Tn=£¨a1+a3++an-1£©+£¨b2+b4++bn£©
=
(a1+an-1)•
n
2
2
+
4(1-4
n
2
)
1-4
=
n2+2n
4
+
4
3
(2n-1)
£»
nÎªÆæÊýʱ£¬Tn=Tn-1+cn£¬
=
(n-1)2+2(n-1)
4
+
4
3
(2n-1-1)+(n+1)
=
n2+4n+3
4
+
1
3
2n+1-
4
3
£¬
£¨3£©¡ßn=2kΪżÊý£¬
¡àTn=
n2+2n
4
+
4
3
(2n-1)
£¬Pn=
n2
4
+24n

Éèdn=A-B=Tn-Pn=
4
3
2n-
47
2
n-
4
3
£¬
¡ßdn+2-dn=2n+2-47£¬
¡àd4£¼d6£¼d8£¼d10£¼2011£¼d12£¼d14£¼¡­£¬ÇÒd2£¼2011
¡àdn¡Ù2011£¬¼´Tn-Pn¡Ù2011£¨nΪżÊý£©£¬
¡àÒÒͬѧµÄ¹ÛµãÕýÈ·£®
µãÆÀ£º´ËÌ⿼²éÁËÒÑÖªÊýÁеÄǰnÏîºÍÇóÊýÁеÄͨÏµÈ±ÈÊýÁе͍Ò弰ͨÏʽ£¬»¹¿¼²éÁËѧÉú·ÖÀàÌÖÂÛµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø