题目内容
各项均为正数的数列{an}的前n项和为Sn,且点(an,Sn)在函数y=
x2+
x-3的图象上,
(1)求数列{an}的通项公式;
(2)记bn=nan(n∈N*),求证:
+
+…+
<
.
| 1 |
| 2 |
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)记bn=nan(n∈N*),求证:
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 3 |
| 4 |
分析:(1)根据点(an,Sn)在函数y=
x2+
x-3的图象上,可得Sn=
an2+
an-3,再写一式,两式相减,即可求出数列{an}的通项公式;
(2)将(1)的结论代入,再采用裂项法求和,即可证得结论.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)将(1)的结论代入,再采用裂项法求和,即可证得结论.
解答:(1)解:∵点(an,Sn)在函数y=
x2+
x-3的图象上,
∴Sn=
an2+
an-3;Sn-1=
an-12+
an-1-3(n≥2)
∵Sn-Sn-1=an,
∴(an+an-1)(an-an-1-1)=0
∵数列{an}各项均为正数
∴an-an-1-1=0(n≥2)
∴数列{an}为等差数列
∵S1=a1=
a12+
a1-3
∴a1=3
∴an=a1+(n-1)d=2+n
(2)证明:bn=nan=n(n+2)
∴
=
(
-
)
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]=
(1+
-
-
)<
∴
+
+…+
<
.
| 1 |
| 2 |
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵Sn-Sn-1=an,
∴(an+an-1)(an-an-1-1)=0
∵数列{an}各项均为正数
∴an-an-1-1=0(n≥2)
∴数列{an}为等差数列
∵S1=a1=
| 1 |
| 2 |
| 1 |
| 2 |
∴a1=3
∴an=a1+(n-1)d=2+n
(2)证明:bn=nan=n(n+2)
∴
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 3 |
| 4 |
点评:本题考查数列与函数,数列与不等式的综合,考查放缩法的运用,求通项中,再写一式,两式相减是常用方法.
练习册系列答案
相关题目