题目内容
(2008•长宁区二模)已知各项均为正数的数列{an}的前n项和sn满足s1>1,且6sn=(an+1)(an+2)(n为正整数).
(1)求{an}的通项公式;
(2)设数列{bn}满足bn=
,求Tn=b1+b2+…+bn;
(3)设Cn=
,(n为正整数),问是否存在正整数N,使得n>N时恒有Cn>2008成立?若存在,请求出所有N的范围;若不存在,请说明理由.
(1)求{an}的通项公式;
(2)设数列{bn}满足bn=
|
(3)设Cn=
| bn+1 |
| bn |
分析:(1)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0由此能求出an.
(2)bn=
,Tn=b1+b2+…+bn.再进行分类讨论能求出Tn.
(3)Cn=
,由此能够导出Cn≤C1=
<2008,因此不存在满足条件的正整数N.
(2)bn=
|
(3)Cn=
|
| 5 |
| 4 |
解答:解:(1)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.…..(2分)
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,
两式相减得:6an=an2-an-12+3an-3an-1
即(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,an=3n-1.….(6分)
(2)bn=
,Tn=b1+b2+…+bn.…..(7分)
当n为偶数时,
Tn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=
+
=
(8
-1)+
,….(9分)
当n为奇数时,Tn=(b1+b3+…+bn)+(b2+b4+…+bn-1)
=
+
=
(8
-1)+
.…(11分)∴Tn=
…..(12分)
(3)Cn=
,…..(14分)
当n为奇数时,Cn+2-Cn=
-
=
[3n+8-64(3n+2)]<0,…(15分)
∴Cn+2<Cn,
∴{Cn}递减,…..(16分)
Cn≤C1=
<2008,…..(17分)
因此不存在满足条件的正整数N.…..(18分)
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,
两式相减得:6an=an2-an-12+3an-3an-1
即(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,an=3n-1.….(6分)
(2)bn=
|
当n为偶数时,
Tn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=
4(1-8
| ||
| 1-8 |
| ||
| 2 |
| 4 |
| 7 |
| n |
| 2 |
| n(3n+4) |
| 4 |
当n为奇数时,Tn=(b1+b3+…+bn)+(b2+b4+…+bn-1)
=
4(1-8
| ||
| 1-8 |
| ||
| 2 |
| 4 |
| 7 |
| n+1 |
| 2 |
| (n-1)(3n+1) |
| 4 |
|
(3)Cn=
|
当n为奇数时,Cn+2-Cn=
| 3n+8 |
| 23n+5 |
| 3n+2 |
| 23n-1 |
| 1 |
| 23n+5 |
∴Cn+2<Cn,
∴{Cn}递减,…..(16分)
Cn≤C1=
| 5 |
| 4 |
因此不存在满足条件的正整数N.…..(18分)
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目