ÌâÄ¿ÄÚÈÝ
Ìî¿ÕÌâ
£¨1£©ÒÑÖª
=
£¬Ôòsin2xµÄֵΪ______£®
£¨2£©ÒÑÖª¶¨ÒåÔÚÇø¼ä[0£¬
]Éϵĺ¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=
¶Ô³Æ£¬µ±x¡Ý
ʱ£¬f£¨x£©=cosx£¬Èç¹û¹ØÓÚxµÄ·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½â£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª______£®
£¨3£©ÉèÏòÁ¿
£¬
£¬
Âú×ã
+
+
=
£¬(
-
)¡Í
£¬
¡Í
£¬Èô|
|=1£¬Ôò|
|2+|
|2+|
|2µÄÖµÊÇ______£®
£¨1£©ÒÑÖª
| cos2x | ||
sin(x+
|
| 4 |
| 3 |
£¨2£©ÒÑÖª¶¨ÒåÔÚÇø¼ä[0£¬
| 3¦Ð |
| 2 |
| 3¦Ð |
| 4 |
| 3¦Ð |
| 4 |
£¨3£©ÉèÏòÁ¿
| a |
| b |
| c |
| a |
| b |
| c |
| 0 |
| a |
| b |
| c |
| a |
| b |
| a |
| a |
| b |
| c |
£¨1£©¡ß
=
=
=
=2cos£¨
+x£©£¬
¡àcos£¨
+x£©=
£¬¡àsin2x=-cos£¨
+2x£©=-[2cos2(
+x)-1]=-£¨-
£©=
£¬
¹Ê´ð°¸Îª
£®
£¨2£©ÒÀÌâÒâ×÷³öº¯Êýy=f£¨x£©ÔÚÇø¼ä[0£¬
]Éϵļòͼ£¬µ±Ö±Ïßy=aÓ뺯Êýy=f£¨x£©µÄͼÏóÓн»µãʱ£¬Ôò¿ÉµÃ-1¡Üa¡Ü0£®
¢Ùµ±-
£¼a¡Ü0£¬f£¨x£©=aÓÐ2¸ö½â£¬¢Úµ±a=-
ʱ£¬f£¨x£©=aÓÐ3¸ö½â£¬
¢Ûµ±-1£¼a£¼-
ʱ£¬f£¨x£©=aÓÐ4¸ö½»µã£¬¢Üa=-1ʱ£¬f£¨x£©=aÓÐ2¸ö½»µã£¬
¹Ê·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½â£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª(-1£¬-
)£¬
¹Ê´ð°¸Îª (-1£¬-
)£®

£¨3£©ÓÉÌâÒâ¿ÉµÃ(
-
)•
=(
-
)•(-
-
)=0£¬¡à
2=
2£¬|
|=|
|£®
ÔÙÓÉ |
|=1£¬¿ÉµÃ|
|=1£®
ÔÙÓÉ
•
=0£¬
=-£¨
+
£© ¿ÉµÃ
2=[-(
+
)]2=
2+
2+2
•
=2£®
¡à|
|2+|
|2+|
|2=4£¬
¹Ê´ð°¸Îª4£®
| cos2x | ||
sin(x+
|
| 4 |
| 3 |
sin(
| ||
sin(x+
|
2sin(
| ||||
sin(x+
|
| ¦Ð |
| 4 |
¡àcos£¨
| ¦Ð |
| 4 |
| 2 |
| 3 |
| ¦Ð |
| 2 |
| ¦Ð |
| 4 |
| 1 |
| 9 |
| 1 |
| 9 |
¹Ê´ð°¸Îª
| 1 |
| 9 |
£¨2£©ÒÀÌâÒâ×÷³öº¯Êýy=f£¨x£©ÔÚÇø¼ä[0£¬
| 3¦Ð |
| 2 |
¢Ùµ±-
| ||
| 2 |
| ||
| 2 |
¢Ûµ±-1£¼a£¼-
| ||
| 2 |
¹Ê·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½â£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª(-1£¬-
| ||
| 2 |
¹Ê´ð°¸Îª (-1£¬-
| ||
| 2 |
£¨3£©ÓÉÌâÒâ¿ÉµÃ(
| a |
| b |
| c |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
| a |
ÔÙÓÉ |
| a |
| b |
ÔÙÓÉ
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| b |
| a |
| a |
| b |
¡à|
| a |
| b |
| c |
¹Ê´ð°¸Îª4£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿