题目内容

函数y=sin2x-sinx-1的值域为


  1. A.
    [-1,1]
  2. B.
    [数学公式,-1]
  3. C.
    [数学公式,1]
  4. D.
    [1,数学公式]
C
分析:令t=sinx,将函数y=sin2x-sinx-1的值域的问题变为求y=t2-t-1在区间[-1,1]上的值域的问题,利用二次函数的单调性求之.
解答:令sinX=t可得y=t2-t-1,t∈[-1,1]
y=t2-t-1的对称轴是t=
≤y≤y(-1)
≤y≤1
即值域为[,1]
故应选C.
点评:本题考点是复合函数的单调性,考查求复合函数的值域,本题直接证明复合三角函数的单调性比较困难,故采取了换元法求值域的技巧,对于解复合函数的值域的问题,换元法是一个比较好的技巧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网