题目内容
(本小题满分12分)已知函数,其中为常数且满足.
(1)求的值;
(2)证明函数在区间上是减函数,并判断在上的单调性;
(3)若对任意的,总有成立,求实数的取值范围.
已知平面向量 满足且与 则的取值范围是 _ .
下列说法中,正确的是( )
A.命题“若,则”的否命题是假命题
B.设为两不同平面,直线,则“”是 “” 成立的充分不必要条件
C.命题“存在”的否定是“对任意”
D.已知,则“”是“”的充分不必要条件
已知集合,,若,则实数=( )
A.-1 B.2 C.-1或2 D.1或-1或2
(本小题满分16分)已知椭圆的左、右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若、分别是椭圆长轴的左、右端点,动点满足,连接,交椭圆于点.证明:为定值.
(3)在(2)的条件下,试问轴上是否存异于点的定点,使得以为直径的圆恒过直线、的交点,若存在,求出点的坐标;若不存在,请说明理由.
下列关系中,正确的个数为 ( )
① ② ③ ④
A.1 B.2 C.3 D.4
(本小题满分12分)已知指数函数满足:,定义域为上的函数是奇函数.
(Ⅰ)求与的解析式;
(Ⅱ)判断在上的单调性并用单调性定义证明.
已知函数 ,且,则( )
A. B. C. D.
已知函数,则的值为__________