题目内容

已知线段AB是过抛物线y2=4x焦点的弦,其长度是6,则AB中点到y轴的距离是
 
分析:设A(x1,y1),B(x2,y2).利用弦长公式|AB|=x1+x2+p=6,和梯形的中位线定理即可得出AB中点到y轴的距离d=
x1+x2
2
解答:解:设A(x1,y1),B(x2,y2).
∵|AB|=x1+x2+p=6,p=2,
∴x1+x2=4.
∴AB中点到y轴的距离d=
x1+x2
2
=2.
故答案为:2.
点评:本题考查了抛物线的焦点弦长公式和梯形的中位线定理,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网