题目内容
已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…
(1)证明:数列{lg(1+an)}是等比数列,并求数列{an}的通项公式;
(2)记bn=
+
,求数列{bn}的前n项和Sn.
(1)证明:数列{lg(1+an)}是等比数列,并求数列{an}的通项公式;
(2)记bn=
| 1 |
| an |
| 1 |
| an+2 |
(1)证明:由已知an+1=
+2an,∴an+1+1=(an+1)2,
∵a1=2,∴an+1>1,两边取对数得 lg(1+an+1)=2lg(1+an),即
=2,
∴{lg(1+an)}是公比为2的等比数列.
∴lg(1+an)=2n-1•lg(1+a1)=2n-1•lg3=lg32n-1,
∴1+an=32n-1(*).
由(*)式得an=32n-1-1.
(2)∵an+1=
+2an,
∴an+1=an(an+2),
∴
=
(
-
),
∴
=
-
,
又bn=
+
,
∴bn=2(
-
).
∴Sn=b1+b2+…+bn
=2(
-
+
-
+…+
-
)
=2(
-
).
∵an=32n-1-1,a1=2,an+1=32n-1,
∴Sn=1-
.
| a | 2n |
∵a1=2,∴an+1>1,两边取对数得 lg(1+an+1)=2lg(1+an),即
| lg(1+an+1) |
| lg(1+an) |
∴{lg(1+an)}是公比为2的等比数列.
∴lg(1+an)=2n-1•lg(1+a1)=2n-1•lg3=lg32n-1,
∴1+an=32n-1(*).
由(*)式得an=32n-1-1.
(2)∵an+1=
| a | 2n |
∴an+1=an(an+2),
∴
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an+2 |
∴
| 1 |
| an+2 |
| 1 |
| an |
| 2 |
| an+1 |
又bn=
| 1 |
| an |
| 1 |
| an+2 |
∴bn=2(
| 1 |
| an |
| 1 |
| an+1 |
∴Sn=b1+b2+…+bn
=2(
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=2(
| 1 |
| a1 |
| 1 |
| an+1 |
∵an=32n-1-1,a1=2,an+1=32n-1,
∴Sn=1-
| 2 |
| 32n-1 |
练习册系列答案
相关题目