题目内容
已知△ABC的三个内角A,B,C满足:A+C=2B,| 1 |
| cosA |
| 1 |
| cosC |
| ||
| cosB |
| A-C |
| 2 |
分析:先根据A,B,C的关系求出B的值,再代入到
+
=-
中得到cosA,cosC的关系,根据和差化积及积化和差公式化简,再将cos
,cos(A+C)的值代入整理后因式分解,即可求出cos
的值.
| 1 |
| cosA |
| 1 |
| cosC |
| ||
| cosB |
| A+C |
| 2 |
| A-C |
| 2 |
解答:解:由题设条件知B=60°,A+C=120°.
∵
=-2
,
∴
+
=-2
将上式化为cosA+cosC=-2
cosAcosC
利用和差化积及积化和差公式,上式可化为2cos
cos
=-
[cos(A+C)+cos(A-C)]
将cos
=cos60°=
,cos(A+C)=-
代入上式得cos(
)=
-
cos(A-C)
将cos(A-C)=2cos2(
)-1代入上式并整理得4
cos2(
)+2cos(
)-3
=0(2cos
-
)(2
cos
+3)=0,
∵2
cos
+3≠0,
∴2cos
-
=0.
从而得cos
=
.
∵
-
| ||
| cos60° |
| 2 |
∴
| 1 |
| cosA |
| 1 |
| cosC |
| 2 |
将上式化为cosA+cosC=-2
| 2 |
利用和差化积及积化和差公式,上式可化为2cos
| A+C |
| 2 |
| A-C |
| 2 |
| 2 |
将cos
| A+C |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| A-C |
| 2 |
| ||
| 2 |
| 2 |
将cos(A-C)=2cos2(
| A-C |
| 2 |
| 2 |
| A-C |
| 2 |
| A-C |
| 2 |
| 2 |
| A-C |
| 2 |
| 2 |
| 2 |
| A-C |
| 2 |
∵2
| 2 |
| A-C |
| 2 |
∴2cos
| A-C |
| 2 |
| 2 |
从而得cos
| A-C |
| 2 |
| ||
| 2 |
点评:本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.
练习册系列答案
相关题目