题目内容
设f1(x)=
,定义fn+1(x)=f1[fn(x)],an=
,n∈N*.
(1)写出an+1与an的关系式;
(2)数列{an}的通项公式;
(3)若T2n=2a2+4a4+6a6+…+2na2n,求T2n.
(4)(只限成志班学生做)若
=
,n∈N+,试比较9T2n与Qn的大小,并说明理由.
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
(1)写出an+1与an的关系式;
(2)数列{an}的通项公式;
(3)若T2n=2a2+4a4+6a6+…+2na2n,求T2n.
(4)(只限成志班学生做)若
| Q | n |
| 4n2+n |
| 4n2+4n+1 |
分析:(1)利用条件进行转化:an+1=
=
•
,从而得出an+1与an的关系式;
(2)由(1)得:{an}成等比数列,首项为a1,根据等比数列的通项公式写出数列{an}的通项公式即可;
(3)由(2)得2na2n=2n
(-
)n-1=n×
×(-
)2n-1对于数列的和:T2n=2a2+4a4+6a6+…+2na2n利用错项相减,得T2n=
(
)n-
(4)由于2na2n<0,得出T2n<0,而Qn>0,从而可比较9T2n和Qn的大小.
| fn+1(0)-1 |
| fn+1(0)+2 |
| 1 |
| 2 |
| 1-f(0) |
| 2+f(0) |
(2)由(1)得:{an}成等比数列,首项为a1,根据等比数列的通项公式写出数列{an}的通项公式即可;
(3)由(2)得2na2n=2n
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3n+4 |
| 9 |
| 1 |
| 4 |
| 4 |
| 9 |
(4)由于2na2n<0,得出T2n<0,而Qn>0,从而可比较9T2n和Qn的大小.
解答:解:(1)an+1=
=
=
=
•
∴an+1=-
an;
(2)∵f(0)=
.
由(1)得:{an}成等比数列,首项为a1=
=
∴an=
(-
)n-1
(3)2na2n=2n
(-
)n-1=n×
×(-
)2n-1
T2n=2a2+4a4+6a6+…+2na2n
∴T2n=-(
)1-2(
)2-3(
)3-…-n(
)n
用错项相减,得T2n=
(
)n-
(4)∵2na2n<0,∴T2n<0
而Qn>0,
∴必有9T2n<Qn.
| fn+1(0)-1 |
| fn+1(0)+2 |
| ||
|
=
| 4-f(0) |
| 4+2f(0) |
| 1 |
| 2 |
| 1-f(0) |
| 2+f(0) |
∴an+1=-
| 1 |
| 2 |
(2)∵f(0)=
| 2 |
| 1 |
由(1)得:{an}成等比数列,首项为a1=
| f(0)-1 |
| f(0)+2 |
| 1 |
| 4 |
∴an=
| 1 |
| 4 |
| 1 |
| 2 |
(3)2na2n=2n
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
T2n=2a2+4a4+6a6+…+2na2n
∴T2n=-(
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
用错项相减,得T2n=
| 3n+4 |
| 9 |
| 1 |
| 4 |
| 4 |
| 9 |
(4)∵2na2n<0,∴T2n<0
而Qn>0,
∴必有9T2n<Qn.
点评:本小题主要考查等比数列的通项公式、数列递推式、数列的求和等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关题目
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,则a2007=( )
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
A、(-
| ||
B、(
| ||
C、(-
| ||
D、(
|