题目内容
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,则a2010=( )
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
分析:由已知中f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,类比推理,计算出数列的前若干项,分析数列各项的变化规律,可归纳出数列的通项公式,进而得到答案.
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
解答:解:∵f1(x)=
,an=
,
∴f1(0)=2,a1=
=
又∵fn+1(x)=f1[fn(x)],
∴f2(0)=f1[f1(0)]=f1(2)=
,a2=
=-
∴f3(0)=f1[f2(0)]=f1(
)=
,a3=
=
∴f4(0)=f1[f3(0)]=f1(
)=
,a4=
=-
∴f5(0)=f1[f4(0)]=f1(
)=
,a5=
=
…
由此归纳推理得:an=(-
)n+1
∴a2010=(-
)2011
故选D
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
∴f1(0)=2,a1=
| 2-1 |
| 2+2 |
| 1 |
| 4 |
又∵fn+1(x)=f1[fn(x)],
∴f2(0)=f1[f1(0)]=f1(2)=
| 2 |
| 3 |
| ||
|
| 1 |
| 8 |
∴f3(0)=f1[f2(0)]=f1(
| 2 |
| 3 |
| 6 |
| 5 |
| ||
|
| 1 |
| 16 |
∴f4(0)=f1[f3(0)]=f1(
| 6 |
| 5 |
| 10 |
| 11 |
| ||
|
| 1 |
| 32 |
∴f5(0)=f1[f4(0)]=f1(
| 10 |
| 11 |
| 22 |
| 21 |
| ||
|
| 1 |
| 64 |
…
由此归纳推理得:an=(-
| 1 |
| 2 |
∴a2010=(-
| 1 |
| 2 |
故选D
点评:本题考查的知识点是数列的应用,数列的函数特征,归纳推理,其中根据已知列出数列前若干项,并归纳出数列的通项公式,是解答的关键.
练习册系列答案
相关题目
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,则a2007=( )
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
A、(-
| ||
B、(
| ||
C、(-
| ||
D、(
|