题目内容
设f1(x)=
,定义fn+1(x)=f1[fn(x)],an=
,其中n∈N*,则数列{an}的通项 .
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
分析:根据已知可得f1(0)=2,a1=
=
,fn+1(0)=f1[fn(0)]=
,从而an+1=-
an.所以数列{an}是首项为
,公比为-
的等比数列,故可求数列{an}的通项.
| 2-1 |
| 2+2 |
| 1 |
| 4 |
| 2 |
| 1+fn(0) |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
解答:解:(1)∵f1(0)=2,a1=
=
,fn+1(0)=f1[fn(0)]=
,
∴an+1=
=
=
=-
•
=-
an,
∴q=
=-
,
∴数列{an}是首项为
,公比为-
的等比数列,
∴an=
(-
)n-1.
故答案为:an=
(-
)n-1.
| 2-1 |
| 2+2 |
| 1 |
| 4 |
| 2 |
| 1+fn(0) |
∴an+1=
| fn+1(0)-1 |
| fn+1(0)+2 |
| ||
|
| 1-fn(0) |
| 4+2fn(0) |
| 1 |
| 2 |
| fn(0)-1 |
| fn(0)+2 |
| 1 |
| 2 |
∴q=
| an+1 |
| an |
| 1 |
| 2 |
∴数列{an}是首项为
| 1 |
| 4 |
| 1 |
| 2 |
∴an=
| 1 |
| 4 |
| 1 |
| 2 |
故答案为:an=
| 1 |
| 4 |
| 1 |
| 2 |
点评:本题考查由数列递推式求数列的通项,属中档题,解决本题的关键准确理解题意,寻求数列递推式.
练习册系列答案
相关题目
设f1(x)=
,fn+1(x)=f1[fn(x)],且an=
,则a2007=( )
| 2 |
| 1+x |
| fn(0)-1 |
| fn(0)+2 |
A、(-
| ||
B、(
| ||
C、(-
| ||
D、(
|