题目内容
【题目】四棱台被过点
的平面截去一部分后得到如图所示的几何体,其下底面四边形
是边长为2的菱形,
,
平面
,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)若
与底面
所成角的正切值为2,求二面角
的余弦值.
![]()
【答案】(I)详见解析;(II)
.
【解析】试题分析:(Ⅰ)易证
,
,进而可得
平面
,从而证得;
(Ⅱ)
与底面
所成角为
,从而可得
,设
,
交于点
,以
为坐标原点建立空间直角坐标系,分别求平面
和平面
的法向量,利用法向量求解二面角即可.
试题解析:
(Ⅰ)∵
平面
,∴
.
在菱形
中,
,
又
,∴
平面
,
∵
平面
,∴平面
平面
.
(Ⅱ)∵
平面![]()
∴
与底面
所成角为
,∴
,∴![]()
设
,
交于点
,以
为坐标原点,如图建立空间直角坐标系.
则
,
,
,
.
,
同理
,
,
,
.
设平面
的法向量
,
∴
则
,
设平面
的法向量
,
则
,
设二面角
为
,
.
![]()
【题目】某食品集团生产的火腿按行业生产标准分成8个等级,等级系数
依次为1,2,3,…,8,其中
为标准
,
为标准
.已知甲车间执行标准
,乙车间执行标准
生产该产品,且两个车间的产品都符合相应的执行标准.
(1)已知甲车间的等级系数
的概率分布列如下表,若
的数学期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
|
|
|
(2)为了分析乙车间的等级系数
,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用该样本的频率分布估计总体,将频率视为概率,求等级系数
的概率分布列和均值;
(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准
的概率.
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,
表示当天的利润(单位:元),求
的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?