题目内容
学习了圆锥曲线及其方程后,对于一个一般的二元二次方程:Ax2+Cy2+Dx+Ey+F=0(A,C,D,E,F为常数),请你写出一个它分别表示
①直线; ②圆; ③椭圆; ④双曲线; ⑤抛物线的必要条件.
①直线; ②圆; ③椭圆; ④双曲线; ⑤抛物线的必要条件.
①方程表示直线,其二次项系数必为0或可分解成两个一次因式的积的形式,故其必要条件:A=C=0,D,E不全为零; 或A•C<0,D,E,F全为零;
②方程表示圆,其二次项系数必须相等且不为0,故其必要条件:A=C,D2+E2-4AF>0;
③方程表示椭圆其二次项系数必须同号,故必要条件:A•C>0, A≠C,
+
-F>0;
④方程表示双曲线其二次项系数必须异号,故必要条件:A•C<0,
+
-F≠0;
⑤方程表示抛物线其二次项系数必须有一个为0,另一个不为0,故必要条件:A=0且CD≠0; 或C=0且AE≠0.
②方程表示圆,其二次项系数必须相等且不为0,故其必要条件:A=C,D2+E2-4AF>0;
③方程表示椭圆其二次项系数必须同号,故必要条件:A•C>0, A≠C,
| D2 |
| 4A2 |
| E2 |
| 4C2 |
④方程表示双曲线其二次项系数必须异号,故必要条件:A•C<0,
| D2 |
| 4A2 |
| E2 |
| 4C2 |
⑤方程表示抛物线其二次项系数必须有一个为0,另一个不为0,故必要条件:A=0且CD≠0; 或C=0且AE≠0.
练习册系列答案
相关题目