题目内容
已知α是第二象限的角,sin(α+
)=
,求tan(α+
)和cosα.
| π |
| 3 |
| 5 |
| 13 |
| π |
| 3 |
分析:首先根据sinα2+cosα2=1,求出cos(α+
)的值,然后根据tanα=
得出tan(α+
)的值;由α=(α+
)-
,再由两角和与差公式求出结果.
| π |
| 3 |
| sinα |
| cosα |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:解:∵α是第二象限的角,sin(α+
)=
>0,
∴cos(α+
)<0
∴cos(α+
)=-
=-
∴tan(α+
)=-
∴cosα=cos(α+
-
)=cos(α+
)cos
+sin(α+
)sin
=-
×
+
×
=
.
| π |
| 3 |
| 5 |
| 13 |
∴cos(α+
| π |
| 3 |
∴cos(α+
| π |
| 3 |
1-sin(α+
|
| 12 |
| 13 |
∴tan(α+
| π |
| 3 |
| 5 |
| 12 |
∴cosα=cos(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 12 |
| 13 |
| 1 |
| 2 |
| 5 |
| 13 |
| ||
| 2 |
5
| ||
| 26 |
点评:确定同角的三角函数值,一定要注意确定角所在的象限;求cosα的值时,α=(α+
)-
,这样就把要求的角的值,转化为已知角求解了,因而要注意角的拆分技巧.
| π |
| 3 |
| π |
| 3 |
练习册系列答案
相关题目