题目内容

已知两数列{an},{bn}(其中bn>0,且bn≠1),满足a1=2,b1=
3
2,
an+1=
1
2
(an+
bn
an
)
bn+1=
1
2
(bn+
1
bn
)
(n∈N+)

(I)求证:an>bn
(II)求证:数列{an}的单调递减且an+1<1+
1
2n
证明:(I)先证bn>1.∵bn>0,bn≠1,∴bn+1=
1
2
(bn+
1
bn
)>
1
2
×2
bn×
1
bn
=1,又b1=
3
2
>1
,∴bn>1.
再证an>bn.①a1=2,b1=
3
2
a1b1>1

②假设m=k时命题成立,即ak>bk>1,
则ak+1-bk+1=
1
2
(ak+
bk
ak
)-
1
2
(bk+
1
bk
)
1
2
(ak+
1
ak
)-
1
2
(bk+
1
bk
)
=
1
2
(ak+bk)(1-
1
akbk
)>
0.
∴ak+1>bk+1
所以n+k+1时命题也成立.
综合①②可得ak>bk
(II)an+1-an=
1
2
(an+
bn
an
)-an
=
1
2
(
bn
an
-an)

∵bn<an,∴
bn
an
<1
,an>1,∴an+1-an<0.
故数列{an}单调递减.
an+1=
1
2
(an+
bn
an
)
1
2
(an+1)

an+1-1<
1
2
(an-1)<
…<
1
2n
(a1-1)

又a1-1=1,∴an+1-1<
1
2n

an+1<1+
1
2n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网