题目内容
7.在数列{an}中,a1+2a2+3a3+…+nan=n(n+1)(n+2),n∈N+.(1)求an;
(2)令bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和.
分析 (1)分类讨论,当n=1时,a1=6,当n≥2时,作差求得nan=n(n+1)(n+2)-(n-1)n(n+1)=3n(n+1),从而求an;
(2)化简bn=$\frac{{a}_{n}}{{2}^{n}}$=3(n+1)$\frac{1}{{2}^{n}}$,结合特征可知选择错位相减法求其前n项和.
解答 解:(1)当n=1时,a1=1(1+1)(1+2)=6,
当n≥2时,a1+2a2+3a3+…+nan=n(n+1)(n+2),
a1+2a2+3a3+…+(n-1)an-1=n(n-1)(n+1),
两式作差可得,
nan=n(n+1)(n+2)-(n-1)n(n+1)=3n(n+1),
故an=3(n+1),
a1=6也满足an=3(n+1),
综上所述,an=3(n+1);
(2)∵bn=$\frac{{a}_{n}}{{2}^{n}}$=3(n+1)$\frac{1}{{2}^{n}}$,
∴设数列{bn}的前n项和为Tn,
则Tn=6•$\frac{1}{2}$+9•$\frac{1}{4}$+…+3(n+1)$\frac{1}{{2}^{n}}$,①
2Tn=6+9•$\frac{1}{2}$+…+3(n+1)$\frac{1}{{2}^{n-1}}$,②
②-①得,
Tn=6+3•$\frac{1}{2}$+…+3$\frac{1}{{2}^{n-1}}$-3(n+1)$\frac{1}{{2}^{n}}$
=6+3$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-3(n+1)$\frac{1}{{2}^{n}}$
=6+3-3$\frac{1}{{2}^{n-1}}$-3(n+1)$\frac{1}{{2}^{n}}$
=6+3-3$\frac{1}{{2}^{n-1}}$-3(n+1)$\frac{1}{{2}^{n}}$
=9-3(n+3)$\frac{1}{{2}^{n}}$.
点评 本题考查了分类讨论的思想与错位相减法的应用,属于中档题.
| A. | $\frac{{n}^{2}}{4}$+$\frac{7n}{4}$ | B. | $\frac{{n}^{2}}{3}$+$\frac{5n}{3}$ | C. | $\frac{{n}^{2}}{2}$+$\frac{3n}{4}$ | D. | n2+n |
| A. | $\frac{1}{2}$ | B. | $\frac{4}{13}$ | C. | $\frac{25}{41}$ | D. | -$\frac{9}{5}$ |
| A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{4}$,$\frac{π}{2}$) | C. | ($\frac{π}{3}$,$\frac{π}{2}$) | D. | (0,$\frac{π}{2}$) |