题目内容
在数列{an}中,a1=1,当n≥2时,an+2anan-1-an-1=0
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| an | 2n+1 |
分析:(1)由已知条件可知an≠0,原式可变形为
-
=2,由等差数列的定义可判断{
}为等差数列,从而可求得
,进而可得an;
(2)先由(1)求得bn,然后利用裂项相消法可求得Sn;
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| an |
(2)先由(1)求得bn,然后利用裂项相消法可求得Sn;
解答:解:(1)由an+2anan-1-an-1=0及a1=1知an≠0,从而可得
-
=2且
=1.
故{
}为以1为首项,公差为2的等差数列.
从而
=
+(n-1)•2,
∴an=
;
(2)∵bn=
=
=
(
-
),
∴Sn=b1+b2+…+bn=
(1-
+
-
+…+
-
)=
(1-
)=
.
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a1 |
故{
| 1 |
| an |
从而
| 1 |
| an |
| 1 |
| a1 |
∴an=
| 1 |
| 2n-1 |
(2)∵bn=
| an |
| 2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题考查利用数列递推式求数列通项公式、裂项相消法对数列求和,考查学生的运算求解能力.
练习册系列答案
相关题目