题目内容

设点P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与圆x2+y2=3b2的一个交点,F1,F2分别是椭圆的左、右焦点,且|PF1|=3|PF2|,则椭圆的离心率为(  )
分析:先由椭圆的定义和已知求出两个焦半径的长,利用余弦定理得关于a、c的等式,然后求得离心率.
解答:解:依据椭圆的定义:|PF1|+|PF2|=2a,又∵|PF1|=3|PF2|,
∴|PF1|=
3
2
a,|PF2|=
1
2
a,
∵圆x2+y2=3b2的半径r=
3
b,
∴三角形F1PF2中有余弦定理可得:(
a
2
)2=(
3
b)2+c2-2
3
cbcosθ

(
3a
2
)
2
=(
3
b)
2
+c2+2
3
cbcosθ

可得7a2=8c2,得e=
14
4

故选 D.
点评:本题考查了椭圆的定义,椭圆的几何性质,余弦定理的应用,离心率的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网