题目内容

设点p是椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)上一点,F1,F2分别是椭圆的左、右焦点,I为△PF1F2的内心,若S△IPF1+S△IPF2=2S△IF1F2,则该椭圆的离心率是
1
2
1
2
分析:设△PF1F2的内切圆半径为r,根据内心的性质,结合三角形面积公式将S△IPF1+S△IPF2=2S△IF1F2化简整理,可得|PF1|+|PF2|=2|F1F2|.由此结合椭圆离心率公式,即可得到该椭圆的离心率.
解答:解:设△PF1F2的内切圆半径为r,则
S△IPF1=
1
2
|PF1|•r,S△IPF2=
1
2
|PF2|•r,S△IF1F2=
1
2
|F1F2|•r,
∵S△IPF1+S△IPF2=2S△IF1F2
1
2
|PF1|•r+
1
2
|PF2|•r=|F1F2|•r,可得|PF1|+|PF2|=2|F1F2|.
∴椭圆的离心率e=
c
a
=
2c
2a
=
|F1F2|
|PF1|+|PF2|
=
1
2

故答案为:
1
2
点评:本题已知椭圆的焦点三角形的一个面积关系式,求椭圆的离心率.着重考查了三角形内切圆的性质、椭圆的标准方程和简单性质等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网