题目内容

5.已知数列{an}满足${a_n}=\left\{\begin{array}{l}2{a_{n-1}}-2,n=2k+1\\{a_{n-1}}+1,n=2k\end{array}\right.$(k∈N*),若a1=1,则S20=2056.

分析 由题意可得数列{an}的奇数项成首项为1,公比为2的等比数列,其偶数项比其前一项多1,运用分组求和和等比数列的求和公式,计算即可得到所求和.

解答 解:数列{an}满足${a_n}=\left\{\begin{array}{l}2{a_{n-1}}-2,n=2k+1\\{a_{n-1}}+1,n=2k\end{array}\right.$(k∈N*),a1=1,
可得a2=a1+1=2,a3=2a2-2=2,a4=a3+1=3,a5=2a4-2=4,…,
可得数列{an}的奇数项成首项为1,公比为2的等比数列,
其偶数项比其前一项多1,
则S20=(1+2+…+29)+(2+3+…+29+1)=$\frac{1-{2}^{10}}{1-2}$+10+$\frac{1-{2}^{10}}{1-2}$
=211+8=2056.
故答案为:2056.

点评 本题考查数列的求和,注意运用分段数列的特点,得到数列{an}的奇数项成首项为1,公比为2的等比数列,其偶数项比其前一项多1,是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网