ÌâÄ¿ÄÚÈÝ
19£®ÑïÖÝÊÝÎ÷ºþËíµÀ³¤3600Ã×£¬ÉèÆû³µÍ¨¹ýËíµÀµÄËÙ¶ÈΪxÃ×/Ã루0£¼x£¼17£©£®¸ù¾Ý°²È«ºÍ³µÁ÷µÄÐèÒª£¬µ±0£¼x¡Ü6ʱ£¬ÏàÁÚÁ½³µÖ®¼äµÄ°²È«¾àÀëdΪ£¨x+b£©Ã×£»µ±6£¼x£¼17ʱ£¬ÏàÁÚÁ½³µÖ®¼äµÄ°²È«¾àÀëdΪ$£¨\frac{a}{6}{x^2}+\frac{x}{3}+2£©$Ã×£¨ÆäÖÐa£¬bÊdz£Êý£©£®µ±x=6ʱ£¬d=10£¬µ±x=16ʱ£¬d=50£®£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©Ò»ÁÐÓÉ13Á¾Æû³µ×é³ÉµÄ³µ¶ÓÔÈËÙͨ¹ý¸ÃËíµÀ£¨µÚÒ»Á¾Æû³µ³µÉí³¤Îª6Ã×£¬ÆäÓàÆû³µ³µÉí³¤Îª5Ã×£¬Ã¿Á¾Æû³µËٶȾùÏàͬ£©£®¼Ç´ÓµÚÒ»Á¾Æû³µ³µÍ·½øÈëËíµÀ£¬ÖÁµÚ13Á¾Æû³µ³µÎ²À뿪ËíµÀËùÓõÄʱ¼äΪyÃ룮
¢Ù½«y±íʾΪxµÄº¯Êý£»
¢ÚҪʹ³µ¶Óͨ¹ýËíµÀµÄʱ¼äy²»³¬¹ý280Ã룬ÇóÆû³µËÙ¶ÈxµÄ·¶Î§£®
·ÖÎö £¨1£©·Ö±ð´úÈëx=6ºÍx=16£¬ÓÉ´ËÄÜÇó³öa£¬bµÄÖµ£®
£¨2£©¢Ù·Ö±ðÇó³öµ±0£¼x¡Ü6ºÍ6£¼x£¼17ʱ£¬º¯ÊýµÄ±í´ïʽ£¬ÓÉ´ËÄܽ«y±íʾΪxµÄº¯Êý£®
¢ÚÍÆµ¼³ö0£¼x¡Ü6ʱ£¬²»·ûºÏÌâÒ⣬µ±6£¼x£¼17ʱ£¬$y=\frac{{2{x^2}+4x+3690}}{x}¡Ü280$£¬ÓÉ´ËÄÜÇó³öÆû³µËÙ¶ÈxµÄ·¶Î§£®
½â´ð ½â£º£¨1£©µ±x=6ʱ£¬d=x+b=6+b=10£¬Ôòb=4£¬
µ±x=16ʱ£¬$d=\frac{a}{6}{x^2}+\frac{x}{3}+2=\frac{a}{6}¡Á{16^2}+\frac{16}{3}+2=50$£¬Ôòa=1£»
ËùÒÔa=1£¬b=4£®¡£¨4·Ö£©
£¨2£©¢Ùµ±0£¼x¡Ü6ʱ£¬$y=\frac{6+5¡Á12+12£¨x+4£©+3600}{x}=\frac{3714+12x}{x}$£¬
µ±6£¼x£¼17ʱ£¬$y=\frac{{6+5¡Á12+12£¨\frac{1}{6}{x^2}+\frac{x}{3}+2£©+3600}}{x}=\frac{{2{x^2}+4x+3690}}{x}$
ËùÒÔ$y=\left\{\begin{array}{l}\frac{3714+12x}{x}£¬0£¼x¡Ü6\\ \frac{{2{x^2}+4x+3690}}{x}£¬6£¼x£¼17\end{array}\right.$£®¡£¨10·Ö£©
¢Úµ±0£¼x¡Ü6ʱ£¬${y_{min}}=\frac{3714+12¡Á6}{6}£¾280$£¬²»·ûºÏÌâÒ⣬
µ±6£¼x£¼17ʱ£¬$y=\frac{{2{x^2}+4x+3690}}{x}¡Ü280$
½âµÃ15¡Üx£¼123£¬ËùÒÔ15¡Üx£¼17
¡àÆû³µËÙ¶ÈxµÄ·¶Î§Îª[15£¬17£©£®¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éʵÊýÖµµÄÇ󷨣¬¿¼²éº¯Êý¹ØÏµÊ½µÄÇ󷨣¬¿¼²éÆû³µËٶȵķ¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýÔÚÉú²ú¡¢Éú»îÖеÄʵ¼ÊÔËÓã®
| A£® | Èô©Vp£¬Ôòq | B£® | Èô©Vq£¬Ôòp | C£® | Èôp£¬Ôò©Vq | D£® | Èô©Vp£¬Ôò©Vq |
| A£® | µÈÑüÖ±½ÇÈý½ÇÐÎ | B£® | µÈÑüÈý½ÇÐÎ | C£® | Ö±½ÇÈý½ÇÐÎ | D£® | µÈ±ßÈý½ÇÐÎ |