题目内容
求数列
,
,
,…,
,…的前n项和S.
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
分析:由于
=
(
-
),利用裂项相消即可求数列的和
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:∵
=
(
-
)
∴Sn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
-
-
)
=
-
-
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2n+2 |
| 1 |
| 2n+4 |
点评:本题主要考查了裂项相消求解数列的和,但要注意裂项时的系数
=
(
-
)不要漏掉.
| 1 |
| n(n+k) |
| 1 |
| k |
| 1 |
| n |
| 1 |
| n+k |
练习册系列答案
相关题目