题目内容
在数列{an}中,a1=2,an+1=
(1)求数列{an}的通项an;
(2)求证:a1(a1-1)+a2(a2-1)+…+an(an-1)<3.
| 2an | an+1 |
(1)求数列{an}的通项an;
(2)求证:a1(a1-1)+a2(a2-1)+…+an(an-1)<3.
分析:(1)对an+1=
两边取倒数,进一步构造出等比数列{
-1},通过等比数列{
-1}的通项求出数列{an}的通项an;
(2)an(an-1)=
,对n≥2时放缩:an(an-1)=
<
=
=
-
,各项相加后容易证明.
| 2an |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(2)an(an-1)=
| 2n |
| (2n-1)2 |
| 2n |
| (2n-1)2 |
| 2n |
| (2n-1) (2n-2) |
| 2n-1 |
| (2n-1) (2n-1-1) |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
解答:解:(1)对an+1=
两边取倒数,得出
=
=
•
+
,
两边减去1,化简并整理得出
-1=
•(
-1),
所以数列{
-1}是等比数列,公比为
,首项为
-1=-
,
-1=(-
)•(
)n-1=-(
)n,an=
,
(2)证明:an(an-1)=
n≥2时,an(an-1)=
<
=
=
-
所以a1(a1-1)+a2(a2-1)+…+an(an-1)<
+(
-
)+(
-
)+…+(
-
)=2+1-
=3-
<3
所以原不等式成立.
| 2an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| 2an |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
两边减去1,化简并整理得出
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
所以数列{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2n |
| 2n-1 |
(2)证明:an(an-1)=
| 2n |
| (2n-1)2 |
n≥2时,an(an-1)=
| 2n |
| (2n-1)2 |
| 2n |
| (2n-1) (2n-2) |
| 2n-1 |
| (2n-1) (2n-1-1) |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
所以a1(a1-1)+a2(a2-1)+…+an(an-1)<
| 2 |
| (2 -1)2 |
| 1 |
| 2 -1 |
| 1 |
| 22-1 |
| 1 |
| 22 -1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
所以原不等式成立.
点评:本题主要考查了数列与不等式的综合,以及数列的递推关系,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目