题目内容
在数列{an}中,a1=0,an+1=-an+3n,其中n=1,2,3,….
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)求
的最大值.
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)求
| an |
| an+1 |
(1)由a1=0,且an+1=-an+3n(n=1,2,3)
得a2=-a1+3=3,
a3=-a2+32=6.
(2)由an+1=-an+3n变形得
an+1-
=-(an-
),
∴{an-
},是首项为a1-
=-
公比为-1的等比数列
∴an-
=-
(-1)n-1
∴an=
+(-1)n•
(n=1,2,3…)
(3)①当n是偶数时
=
=
=
+
∴
随n增大而减少
∴当n为偶数时,
最大值是
.
②当n是奇数时
=
=
=
-
∴
随n增大而增大且
=
-
<
<
综上
最大值为
.
得a2=-a1+3=3,
a3=-a2+32=6.
(2)由an+1=-an+3n变形得
an+1-
| 3n+1 |
| 4 |
| 3n |
| 4 |
∴{an-
| 3n |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
∴an-
| 3n |
| 4 |
| 3 |
| 4 |
∴an=
| 3n |
| 4 |
| 3 |
| 4 |
(3)①当n是偶数时
| an |
| an+1 |
| ||||
|
| 3n+3 |
| 3n+1-3 |
| 1 |
| 3 |
| 4 |
| 3n+1-3 |
∴
| an |
| an+1 |
∴当n为偶数时,
| an |
| an+1 |
| 1 |
| 2 |
②当n是奇数时
| an |
| an+1 |
| ||||
|
| 3n-3 |
| 3n+1+3 |
| 1 |
| 3 |
| 4 |
| 3n+1+3 |
∴
| an |
| an+1 |
| an |
| an+1 |
| 1 |
| 3 |
| 4 |
| 3n+1+3 |
| 1 |
| 3 |
| 1 |
| 2 |
综上
| an |
| an+1 |
| 1 |
| 2 |
练习册系列答案
相关题目