题目内容
已知
=(1-t,1-t,t),
=(2,t,t),则|
-
|的最小值是
.
| a |
| b |
| b |
| a |
3
| ||
| 5 |
3
| ||
| 5 |
分析:根据向量
、
的坐标,可得向量
-
=(1+t,2t-1,0),结合向量的模的公式,得到|
-
|=
,最后利用二次函数求最值的方法,可得|
-
|的最小值.
| a |
| b |
| b |
| a |
| b |
| a |
| 5t2-2t+2 |
| b |
| a |
解答:解:∵
=(1-t,1-t,t),
=(2,t,t),
∴向量
-
=(1+t,2t-1,0)
可得向量
-
的模|
-
|=
=
∵5t2-2t+2=5(t-
)2+
∴当且仅当t=
时,5t2-2t+2的最小值为
所以当t=
时,|
-
|的最小值是
=
故答案为:
| a |
| b |
∴向量
| b |
| a |
可得向量
| b |
| a |
| b |
| a |
| (1+t)2+ (2t-1)2+02 |
| 5t2-2t+2 |
∵5t2-2t+2=5(t-
| 1 |
| 5 |
| 9 |
| 5 |
∴当且仅当t=
| 1 |
| 5 |
| 9 |
| 5 |
所以当t=
| 1 |
| 5 |
| b |
| a |
|
3
| ||
| 5 |
故答案为:
3
| ||
| 5 |
点评:本题给出两个含有字母参数的向量,求它们差的长度的最小值,着重考查了空间向量的坐标运算和二次函数的最值等知识点,属于基础题.
练习册系列答案
相关题目
已知
=(1-t,1-t,t),
=(2,t,t),则|
-
|的最小值是( )
| a |
| b |
| a |
| b |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|