题目内容
3.若$\frac{sinθ}{{\sqrt{1+{{cot}^2}θ}}}-\frac{cosθ}{{\sqrt{1+{{tan}^2}θ}}}=-1$$(θ≠\frac{kπ}{2},k∈Z)$,则θ是第几象限角( )| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
分析 由条件利用同角三角函数的基本关系,以及三角函数在各个象限中的符号可得sinθ<0,且cosθ>0,从而得到θ为第四象限角.
解答 解:若$\frac{sinθ}{{\sqrt{1+{{cot}^2}θ}}}-\frac{cosθ}{{\sqrt{1+{{tan}^2}θ}}}=-1$=sinθ|sinθ|-cosθ|cosθ|,$(θ≠\frac{kπ}{2},k∈Z)$,
则sinθ<0,且cosθ>0,故θ为第四象限角,
故选:D.
点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关题目
14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=-20,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
8.已知实数x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,z=x+yi(i为虚数单位),则|z-1+2i|的最小值是( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | $\sqrt{5}$ |
12.函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相邻两个对称中心的距离为$\frac{π}{2}$,以下哪个区间是函数f(x)的单调减区间( )
| A. | [-$\frac{π}{3}$,0] | B. | [0,$\frac{π}{3}$] | C. | [$\frac{π}{12}$,$\frac{π}{2}$] | D. | [$\frac{π}{2}$,$\frac{5π}{6}$] |