题目内容
y2=2px(p>0)的弦OA、OB互相垂直,求O在AB上射影M的轨迹方程.分析:设A(x1,y1),B(x2,y2),M(x,y),由KAB=
=
=
,知AB:y-y1=
(x-x1),再由OA⊥OB,知x1x2+y1y2=0,y1y2=-4p2,由此能求出O在AB上射影M的轨迹方程.
| y1-y2 |
| x1-x2 |
| y1-y2 | ||||||
|
| 2p |
| y1+y2 |
| 2p |
| y1+y2 |
解答:解:设A(x1,y1),B(x2,y2),M(x,y)
则:KAB=
=
=
∴kOM=-
(2分)
∴AB:y-y1=
(x-x1)(4分)
即:(y1+y2)y-y12-y1y2=2px-2px1
∵OA⊥OB
∴x1x2+y1y2=0
∵y12y22=4p2x1x2=4p2(-y1y2)且y1y2≠0
∴y1y2=-4p2
又y12=2px1
∴(y1+y2)y=2px-4p2(8分)
OM:y=-
x(10分)
∴x2+y2-2px=0(12分)
则:KAB=
| y1-y2 |
| x1-x2 |
| y1-y2 | ||||||
|
| 2p |
| y1+y2 |
∴kOM=-
| y1+y2 |
| 2p |
∴AB:y-y1=
| 2p |
| y1+y2 |
即:(y1+y2)y-y12-y1y2=2px-2px1
∵OA⊥OB
∴x1x2+y1y2=0
∵y12y22=4p2x1x2=4p2(-y1y2)且y1y2≠0
∴y1y2=-4p2
又y12=2px1
∴(y1+y2)y=2px-4p2(8分)
OM:y=-
| y1+y2 |
| 2p |
∴x2+y2-2px=0(12分)
点评:本题考查点的轨迹方程,解题时要注意公式的合理运用.
练习册系列答案
相关题目