题目内容

已知|
a
| =2
2
|
b
| =3
a
b
的夹角为
π
4
,如果
p
=
a
+2
b
q
=2
a
-
b
,则|
p
-
q
|
=等于(  )
分析:由题意可得:
a
b
=6,并且得到
p
-
q
=-
a
+3
b
,再结合求模公式得到|
p
-
q
|=
(
p
-
q
)
2
=
(-
a
+3
b
)
2
,进而求出答案.
解答:解:因为|
a
| =2
2
|
b
| =3
a
b
的夹角为
π
4

所以
a
b
=6.
又因为
p
=
a
+2
b
q
=2
a
-
b

所以
p
-
q
=-
a
+3
b

所以|
p
-
q
|=
(
p
-
q
)
2
=
(-
a
+3
b
)
2
=
a
2
-6
a
b
+9
b
2
=
53

故选B.
点评:本题主要考查向量的数量积运算,以及向量的求模公式|
a
|=
(
a
)
2
,此题解决的小窍门是不要直接运用公式,而是结合题意首先得到
p
-
q
=-
a
+3
b
,再利用求模公式,这样可以减少计算量,此题属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网