题目内容

已知tanα=2求下列代数式的值:
(1)
2sin2α-3cos2α4sin2α-9cos2α

(2)3sin2α-sinαcosα+1.
分析:(1)原式分子分母除以cos2α,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值;
(2)原式分母看做“1”,利用同角三角函数间基本关系化简,再弦化切后把tanα的值代入计算即可求出值.
解答:解:(1)∵tanα=2,
∴原式=
2tan2α-3
4tan2α-9
=
22-3
22-9
=
5
7

(2)∵tanα=2,
∴原式=
4sin2α-sinαcosα+cos2α
sin2α+cos2α
=
4tan2α-tanα+1
tan2α+1
=
22-2+1
22+1
=
15
5
=3.
点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网