题目内容

5.已知等差数列{an}的前5项和为105,且a10=2a5,对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn求数列{cn}的前n项和Sn

分析 (1)设等差数列{an}的公差为d,由前5项和为105,且a10=2a5,可得$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=105}\\{{a}_{1}+9d=2({a}_{1}+4d)}\end{array}\right.$,解出可得an.对m∈N*,an≤72m,即可得出bm
(2)cn=an•bn=n•49n.利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵前5项和为105,且a10=2a5
∴$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=105}\\{{a}_{1}+9d=2({a}_{1}+4d)}\end{array}\right.$,解得a1=d=7.
∴an=7+7(n-1)=7n.
对m∈N*,an=7n≤72m
则n≤72m-1
bm=72m-1
(2)cn=an•bn=7n•72n-1=n•49n
∴数列{cn}的前n项和Sn=49+2×492+3×493+…+n•49n
49Sn=492+2×493+…+(n-1)•49n+n•49n+1
∴-48Sn=49+492+…+49n-+n•49n+1=$\frac{49(4{9}^{n}-1)}{49-1}$-n•49n+1=$\frac{1-48n}{48}•4{9}^{n+1}$-$\frac{49}{48}$,
∴Sn=$\frac{48n-1}{4{8}^{2}}•4{9}^{n+1}$+$\frac{49}{4{8}^{2}}$.

点评 本题考查了递推关系的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网