题目内容
复数z=
( i为虚数单位 )的共轭复数在复平面内对应的点所在的象限( )
| 2-i |
| 2+i |
分析:通过复数的分母实数化,求出复数的共轭复数对应的点的坐标,即可得到结果.
解答:解:因为复数z=
,
所以z=
=
,
∴
=
+
i,
共轭复数的对应点为(
,
).在第一象限.
故选A.
| 2-i |
| 2+i |
所以z=
| (2-i)(2-i) |
| 22-i2 |
| 3-4i |
| 5 |
∴
. |
| z |
| 3 |
| 5 |
| 4 |
| 5 |
共轭复数的对应点为(
| 3 |
| 5 |
| 4 |
| 5 |
故选A.
点评:本题考查复数代数形式的混合运算,复数的几何意义,考查计算能力.
练习册系列答案
相关题目