题目内容
设函数f(x)=
sinxcosx-cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,
]时,求函数f(x)的最大值和最小值.
| 3 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,
| π |
| 2 |
(Ⅰ)f(x)=
sin2x-
cos2x-
=sin(2x-
)-
.
T=
=π,故f(x)的最小正周期为π.
(Ⅱ)因为0≤x≤
,
所以-
≤2x-
≤
.
所以当2x-
=
,即x=
时,f(x)有最大值
,
当2x-
=-
,即x=0时,f(x)有最小值-1.
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
T=
| 2π |
| 2 |
(Ⅱ)因为0≤x≤
| π |
| 2 |
所以-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
所以当2x-
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
当2x-
| π |
| 6 |
| π |
| 6 |
练习册系列答案
相关题目
设函数f(x)=
x3+
x2+4x-1,其中θ∈[0,
],则导数f'(-1)的取值范围( )
| ||
| 3 |
| cosθ |
| 2 |
| 5π |
| 6 |
| A、[3,6] | ||||
B、[3, 4+
| ||||
C、[4-
| ||||
D、[4-
|