题目内容

若椭圆
x2
36
+
y2
9
=1的弦被点(4,2)平分,则此弦所在直线的斜率为(  )
分析:利用平方差法:设弦的端点为A(x1,y1),B(x2,y2),将A、B坐标代入椭圆方程,两式作差变形,根据斜率公式、中点坐标公式即可求得答案.
解答:解:设弦的端点为A(x1,y1),B(x2,y2),则x1+x2=8,y1+y2=4,
将A、B坐标代入椭圆方程,得
x12
36
+
y12
9
=1
①,
x22
36
+
y22
9
=1
②,
①-②得,
x12-x22
36
+
y12-y22
9
=0
,即
y1-y2
x1-x2
=-
x1+x2
4(y1+y2)
=-
1
2

所以此弦所在直线的斜率为-
1
2

故选A.
点评:本题考查直线与圆锥曲线的位置关系及直线的斜率,属中档题,涉及弦中点问题往往考虑平方差法解决,即设弦端点坐标,代入圆锥曲线方程,作差变形,借助斜率公式、中点坐标公式可得弦的斜率与中点坐标间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网