搜索
题目内容
已知数列
是等差数列
,
,
的前
项和为
,则使得
达到最大的
是( )
A.18
B.19
C.20
D.21
试题答案
相关练习册答案
C
试题分析:根据题意,由于数列
是等差数列
,
,故可知公差为-2,那么可知首项为35+4=39,那么根据前n项和公式可知,
,根据二次函数性质可知n=20时函数值最大,及前20项和最大,故选C.
点评:主要是考查了等差数列的通项公式和求和的运用,属于基础题。
练习册系列答案
好卷系列答案
阳光课堂课时优化作业系列答案
左讲右练系列答案
畅优新课堂系列答案
世纪金榜百练百胜系列答案
世纪金榜金榜学案系列答案
黄冈100分闯关系列答案
原创课堂课时作业系列答案
全频道同步课时作业系列答案
通城学典活页检测系列答案
相关题目
已知数列
的首项为2,数列
为等差数列且
(
).若
,
,则
.
在等差数列{
a
n
}中,已知
a
4
+
a
8
=16,则该数列前11项和
S
11
=( )
A.58
B.88
C.143
D.176
已知公差不为零的等差数列
中,
,且
成等比数列.
(Ⅰ)求数列
的通项公式;
(Ⅱ)令
(
),求数列
的前
项和
.
已知数列{
}的前
项和为
(
为常数,
N
*
).
(1)求
,
,
;
(2)若数列{
}为等比数列,求常数
的值及
;
(3)对于(2)中的
,记
,若
对任意的正整数
恒成立,求实数
的取值范围.
已知等差数列
的前四项和为10,且
成等比数列
(1)求通项公式
(2)设
,求数列
的前
项和
设
是等差数列{
a
n
}的前
n
项和,若
,则
.
已知数列{
}满足
=3,
=
。设
,证明数列{
}是等差数列并求通项
。
已知数列
的前
n
项和为
,
=1,且
.
(1)求
,
的值,并求数列
的通项公式;
(2)解不等式
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案