题目内容

已知点P在平面区域数学公式,点Q在曲线(x+2)2+y2=1上,那么|PQ|的最小值是


  1. A.
    1
  2. B.
    2
  3. C.
    数学公式-1
  4. D.
    数学公式
A
分析:作出可行域,将|PQ|的最小值转化为圆心到可行域的最小值,结合图形,求出|CP|的最小值,减去半径得|PQ|的最小值.
解答:如图,画出平面区域(阴影部分所示),由圆心C(-2,0)向直线3x+4y-4=0作垂线,圆心C(-2,0)到直线3x+4y-4=0的距离为=2,又圆的半径为1,所以可求得|PQ|的最小值是1.
故选A
点评:本题考查简单线性规划的应用、圆方程的综合应用、数学结合求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网