题目内容
已知sinα=| 4 |
| 5 |
| π |
| 2 |
(Ⅰ)sin2α;
(Ⅱ)sin(α-
| π |
| 4 |
分析:(I)由sinα=
,α∈(0,
)可求cosα=
,代入公式sin2α=2sinαcosα求值
(II)利用两角差的正弦公式sin(α-
) =sinαcos
-sin
cosα代入求值
| 4 |
| 5 |
| π |
| 2 |
| 3 |
| 5 |
(II)利用两角差的正弦公式sin(α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:解(Ⅰ)∵sinα=
,α∈(0,
),
∴cosα=
=
.
sin2a=2sinacosa
=2×
×
sin(α-
)=sinαcos
-cosαsin
=
(Ⅱ)sin(a-
)=sinacos
-cosαsin
×
-
×
=
| 4 |
| 5 |
| π |
| 2 |
∴cosα=
| 1-sin2α |
| 3 |
| 5 |
sin2a=2sinacosa
=2×
| 4 |
| 5 |
| 3 |
| 5 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 24 |
| 25 |
(Ⅱ)sin(a-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
| ||
| 10 |
点评:本题主要是二倍角公式及两角差的正弦公式的简单运用,解决问题的关键是熟练掌握公式、运用公式.
练习册系列答案
相关题目