ÌâÄ¿ÄÚÈÝ
1£®£¨1£©ÊÔÇó´ËÅçȪÅçÉäµÄÔ²Ðη¶Î§°ë¾¶µÄ×î´óÖµ£»
£¨2£©Èô¼Æ»®ÔÚÒ»½¨ÖþÎïǰάÐÞÒ»¸ö¾ØÐλ¨Ì³²¢ÔÚ»¨Ì³ÄÚ×°Á½¸öÕâÑùµÄÅçȪ£¨ÈçͼËùʾ£©£¬ÈçºÎÉè¼Æ»¨Ì³µÄ³ß´çºÍÁ½¸öÅçË®Æ÷µÄλÖ㬲ÅÄÜʹ»¨Ì³µÄÃæ»ý×î´óÇÒÄÜÈ«²¿Å絽ˮ£¿
·ÖÎö £¨1£©Áîy=0£¬¿É½áºÏt¡Ê£¨0£¬60£©£¬¼´¿ÉÇó³öÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµ£»
£¨2£©»¨Ì³µÄ³¤¡¢¿í·Ö±ðΪxm£¬ym£¬¸ù¾ÝÒªÇ󣬾ØÐλ¨Ì³Ó¦ÔÚÅçË®ÇøÓòÄÚ£¬¶¥µãӦǡºÃλÓÚÅçË®ÇøÓòµÄ±ß½ç£¬ÎÊÌâת»¯ÎªÔÚx£¾0£¬y£¾0£¬$\frac{{x}^{2}}{4}+{y}^{2}=100$µÄÌõ¼þÏ£¬ÇóS=xyµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©µ±y=0ʱ£¬$x=\frac{20sin\frac{t¦Ð}{60}}{1+4si{n}^{2}\frac{2t¦Ð}{60}}$=$\frac{20}{si{n}^{-1}\frac{t¦Ð}{60}+4sin\frac{t¦Ð}{60}}$£¬
Òòt¡Ê£¨0£¬60£©Ê±£¬$sin\frac{t¦Ð}{60}¡Ê£¨0£¬1£©$£¬¹Ê$si{n}^{-1}\frac{t¦Ð}{60}+4sin\frac{t¦Ð}{60}¡Ý4$£¬
´Ó¶øµ±$sin\frac{t¦Ð}{60}=\frac{1}{2}$£¬¼´µ±t=10»ò50ʱ£¬xÓÐ×î´óÖµ5£¬
ËùÒÔ´ËÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµÊÇ5m£»
£¨2£©É軨̳µÄ³¤¡¢¿í·Ö±ðΪxm£¬ym£¬¸ù¾ÝÒªÇó£¬
¾ØÐλ¨Ì³Ó¦ÔÚÅçË®ÇøÓòÄÚ£¬¶¥µãӦǡºÃλÓÚÅçË®ÇøÓòµÄ±ß½ç£¬
ÒÀÌâÒâµÃ£º$£¨\frac{x}{4}£©^{2}+£¨\frac{y}{2}£©^{2}=25$£¬£¨x£¾0£¬y£¾0£©
ÎÊÌâת»¯ÎªÔÚx£¾0£¬y£¾0£¬$\frac{{x}^{2}}{4}+{y}^{2}=100$µÄÌõ¼þÏ£¬ÇóS=xyµÄ×î´óÖµ£®
¡ßS=xy=2•$\frac{x}{2}$•y¡Ü$\frac{{x}^{2}}{4}+{y}^{2}$=100£¬
ÓÉ$\frac{x}{2}$=yºÍ$\frac{{x}^{2}}{4}+{y}^{2}$=100¼°x£¾0£¬y£¾0µÃ£º
x=$10\sqrt{2}$£¬y=$5\sqrt{2}$£¬
¡àSmax=100£¬
¹Êµ±»¨Ì³µÄ³¤Îª$10\sqrt{2}$m¡¢¿íΪ$5\sqrt{2}$m¡¢Á½ÅçË®Æ÷λÓÚ¾ØÐηֳɵÄÁ½¸öÕý·½ÐεÄÖÐÐÄʱ·ûºÏÒªÇó£®
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýÄ£Ð͵ÄÔËÓ㬿¼²é»ù±¾²»µÈʽ£¬¿¼²éѧÉúÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÖеµÌ⣮
| A£® | 15¡ã | B£® | 30¡ã | C£® | 45¡ã | D£® | 60¡ã |
| A£® | |$\overrightarrow{AB}$|-|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$| | B£® | |$\overrightarrow{AB}$|-|$\overrightarrow{CA}$|=|$\overrightarrow{BC}$-$\overrightarrow{AB}$| | C£® | |$\overrightarrow{CA}$-$\overrightarrow{BC}$|=|$\overrightarrow{AC}$-$\overrightarrow{BA}$| | D£® | |$\overrightarrow{CA}$-$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$| |
| A£® | sinx£¼0 | B£® | cosx£¼0 | C£® | sin2x£¼0 | D£® | cos2x£¼0 |